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Abstract

Camera-based 3D semantic occupancy prediction aims to
estimate dense voxel grids of 3D scenes from 2D images. It
is gaining attention due to its resource efficiency compared
to 3D sensors (i.e., LiDAR) for understanding 3D scenes.
However, due to the perspective projection, camera-based
methods inherently suffer from a 2D-3D discrepancy prob-
lem, where closer objects appear larger in 2D images. To
address this issue, we propose a novel framework, VPOcc,
that leverages a vanishing point (VP) to mitigate the 2D-
3D discrepancy. As a pixel-level solution, we introduce
VPZoomer, which warps images by counteracting the per-
spective effect through a VP-based homography transform.
In addition, as a feature-level solution, we propose VP-
guided cross-attention (VPCA) that performs perspective-
aware feature aggregation. Lastly, spatial volume fusion
(SVF) module fuses two feature volumes extracted from
original and warped images to complement each other. By
effectively incorporating VP, our framework achieves im-
proved performance in both IoU and mIoU metrics on Se-
manticKITTI and SSCBench-KITTI360 datasets.

1. Introduction
Camera-based 3D semantic occupancy prediction, which
estimates semantic voxel grids of 3D scenes using only
RGB images, is becoming important for the safe naviga-
tion of robots and autonomous vehicles. However, camera-
based methods face challenges such as missing metric-
scale depth [1], feature dimension mismatch [2], and oc-
clusion [3], which are all related to perspective geometry.

2D images are created by projecting 3D scenes onto im-
age planes via perspective projection, causing a 2D-3D dis-
crepancy based on distance from the camera. As shown in
Fig. 1, the nearby object (left green box) and the distant ob-
ject (right red box), which are similar in 3D size, appear dif-
ferently sized in the 2D image. We break down this problem
into two perspectives: pixel and feature levels. The pixel-
level discrepancy indicates a discrepancy in the number of
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Figure 1. Overview of the proposed VPOcc. Problem: Due to
perspective projection, 3D objects of similar size appear differ-
ently in a 2D image depending on their distance from the camera.
Solution: Our framework leverages a vanishing point (VP), incor-
porating VP-based image synthesis and VP-guided feature aggre-
gation to mitigate the imbalance caused by perspective projection.

pixels between near and far object regions in the 2D im-
age. Additionally, it causes a feature-level discrepancy, an
imbalance in feature granularity, as a fixed kernel captures
fine local details in near areas but broad global features in
distant areas.

Although deformable mechanisms [4] have been pro-
posed to address the fixed receptive field problem, they may
not fully account for perspective geometry. We address this
using a vanishing point (VP), where 3D parallel lines con-
verge in 2D images (see Fig. 1-II). In road scenes, a domi-
nant VP often indicates distant areas, allowing us to roughly
distinguish between near and far regions.

In this paper, we propose VPOcc, a framework leverag-
ing VP for 3D semantic occupancy prediction to mitigate
the perspective effect. Our framework includes: (1) VP-
Zoomer, which creates VP-guided warped images by coun-
teracting the perspective effect at the pixel level. (2) VP-
guided cross-attention (VPCA), which samples perspective-
aware offset points using VP to address the imbalance in
feature granularity at the feature level. (3) Spatial volume
fusion (SVF), which integrates feature volumes from the
original and warped images to complement each other. As a
result, we improve performance on the SemanticKITTI [5]
and SSCBench-KITTI360 [6] datasets.

https://vision3d-lab.github.io/vpocc/
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Figure 2. Overall architecture of VPOcc. In the feature extraction step, a zoomed-in image is generated using VPZoomer, and multi-scale
feature maps F2D

o and F2D
z are extracted from Io and Iz . During the feature lifting, the depth proposed voxel query Qp is employed with

VP-guided cross-attention (VPCA) on F2D
o and deformable cross-attention on F2D

z to construct the voxel feature volumes F3D
o and F3D

z ,
respectively. In the feature volume fusion stage, both F3D

o and F3D
z are fused using the spatial volume fusion (SVF) module and refined

via the 3D UNet-based decoder. Finally, the prediction head estimates the 3D semantic voxel map of the entire scene.

2. Related Work

Camera-based 3D semantic occupancy prediction [7] aims
to estimate a complete 3D scene as a voxel grid of occu-
pancy and semantics from 2D images, which indicate only a
partial scene. Previous works primarily focus on transform-
ing 2D features into 3D voxel grids. MonoScene [1] directly
projects 2D features onto 3D voxels, while VoxFormer [2]
aggregates 2D image features into 3D voxel space using de-
formable cross-attention. OccFormer [8] employs a local-
global transformer decoder and Symphonies [3] proposes
Serial Instance-Propagated Attentions. In contrast, we en-
hance 3D scene understanding from limited 2D images by
incorporating VP to address perspective geometry.

For VP, prior works have explored the use of VP to im-
prove 2D image understanding. VP-based image resam-
pling has been employed to enhance small-object detection
in 2D [9], while VP-guided motion prediction has been used
to improve video segmentation accuracy [10]. Unlike these
approaches, we propose a novel method that leverages VP
to enhance 3D scene understanding from 2D images.

3. Method

3.1. Overview

Feature extraction. Given an input image Io ∈ RH×W×3

and a corresponding VP, we generate a zoomed-in image
Iz ∈ RH×W×3 using the proposed VP-based zoom-in mod-
ule, VPZoomer (see Sec. 3.2). It enlarges the far areas and
shrinks the near areas, simultaneously creating symmetric
images around the image center via warping the original im-
age. By utilizing both Io and Iz , which contain differently
scaled scenes based on the distance from the camera, we
can leverage balanced pixel information across the scene by

addressing the 2D-3D discrepancy at the pixel level. Sub-
sequently, we use an encoder initialized with pre-trained
MaskDINO [11] following Symphonies [3] to create multi-
scale feature maps F2D

o and F2D
z for each of Io and Iz .

Feature lifting. We construct a depth proposed voxel
query Qp, following Symphonies [3]. First, we initialize
voxel token Q ∈ RX×Y×Z×C with learnable embeddings.
We back-project depth values from the image plane into
3D space using camera parameters, converting depth val-
ues into 3D points. Then, voxel tokens overlapping with
these 3D points are employed as Qp. With Qp, we ag-
gregate multi-scale image features via cross-attention to
construct 3D voxel feature volumes. In this process, our
VP-guided cross-attention (VPCA) module, which samples
points towards VP, is employed on F2D

o to generate F3D
o ∈

RX×Y×Z×C . With this perspective-aware 2D point sam-
pling, we can aggregate 2D features with a more suitable
granularity for 3D representation. Additionally, we utilize
the general deformable cross-attention (DCA) [4] to gener-
ate F3D

z ∈ RX×Y×Z×C by aggregating 2D image features
from F2D

z , which are from the image distorted by zoom-in.
As a result, we obtain the voxel feature volumes F3D

o and
F3D

z from the original and zoomed-in images.

Feature volume fusion. F3D
o and F3D

z are fused through
the spatial volume fusion (SVF) module and a lightweight
3D UNet-based decoder. By fusing them, each voxel ag-
gregates the balanced number of features and uniform fea-
ture granularity from the image, regardless of its distance
from the camera. Lastly, the fused voxel feature volume is
passed through a prediction head, which consists of 3D con-
volutions for upsampling to the target size, a 3D ASPP [12]
block, and a 3D convolution layer to generate the 3D se-
mantic voxel grids.
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Figure 3. Illustration of VPZoomer. Left: The original image
Io with source areas (SL, SR) of blue trapezoids. Right: The
zoomed-in image Iz with target areas (TL, TR) of red rectangles.
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Figure 4. VP-guided point sampling. Centered on the reference
point r, we first generate the initial grid O with the offset d and ro-
tate it by an angle θ to obtain Õ. Next, we identify the intersection
grid Ô at the cross-point of lines from Õ and VP v. As a result, a
set of sampling points P is composed of {Õ, Ô, r}.

Training objective. Following MonoScene [1], we use
scene-class affinity loss Lscal for class-wise metrics, with
Lsem

scal and Lgeo
scal for geometry and semantics. We also use

cross-entropy loss Lce, weighted by class frequencies, for
occupancy prediction. The total loss is formulated as:

L = Lgeo
scal + Lsem

scal + Lce. (1)

3.2. VPZoomer: VP-based image warping

Due to perspective projection, 3D scenes projected onto 2D
image planes exhibit pixel density imbalance based on their
distance from the camera. To mitigate this, our VPZoomer
generates the zoomed-in image Iz warped toward VP, re-
sulting in the effects of compressing near areas, enlarging
far areas, and ensuring horizontal symmetry (see Fig. 3).

Given the original image Io and VP v = [vx, vy]
⊤, VP-

Zoomer warps two source areas with trapezoidal shapes
(blue) to target areas of rectangular shapes (red) by 2D
transformation. Iz is composed by the following process:

Iz = M⊙ Il + (1−M)⊙ Ir,

where Ir = HR(Io), Il = HL(Io),
(2)

M is a binary mask that activates the left-half area (W/2),
1 − M activates the remaining half area, and HL(·) and
HR(·) represent warping functions.

3.3. VP-guided cross-attention

Recently, deformable cross-attention between 3D voxel
queries and 2D image features has been commonly em-
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SemanticKITTI

MonoScene [1] 34.16 11.08 54.70 27.10 14.40 18.80 3.30 14.90
VoxFormer [2] 42.95 12.20 53.90 25.30 19.80 20.80 3.50 22.40
OccFormer [8] 34.53 12.32 55.90 30.30 15.70 21.60 1.20 16.80
Symphonies [3] 42.19 15.04 58.40 29.30 24.70 23.60 3.20 24.20
VPOcc (Ours) 44.58 16.15 58.90 32.60 27.42 25.32 6.13 26.87

SSCBench-KITTI360

MonoScene [1] 37.87 12.31 48.35 28.13 32.89 19.34 8.02 26.15
VoxFormer [2] 38.76 11.91 52.99 27.21 31.18 17.84 4.56 14.69
OccFormer [8] 40.27 13.81 54.30 31.53 36.42 22.58 9.89 31.00
Symphonies [3] 44.12 18.58 54.94 32.76 35.11 30.02 25.07 38.33
VPOcc (Ours) 46.39 19.80 58.68 37.87 42.62 28.73 21.71 37.77

Table 1. Quantitative results on SemanticKITTI [5] and
SSCBench-KITTI360 [6] test set. IoU and mIoU are computed
over all classes, with selected dominant (i.e., road, sidewalk, veg-
etation, building) and rare classes (i.e., car, truck) also reported.

ployed to lift 2D features into 3D [2, 3]. However, this ap-
proach only implicitly adjusts the offsets of sampling points
without considering geometry between 2D and 3D (i.e.,
perspective projection). To resolve this, we introduce the
VP-guided cross-attention (VPCA) module, which samples
points in a trapezoidal shape towards VP.

Feature aggregation by cross-attention. Following
Fig. 4, VPCA samples image features F2D

o (ps), where
ps ∈ P , and d is determined by distance between r and v,
with θ directed toward v. Next, using the depth-proposed
voxel queries Qp, VPCA aggregates image features via a
cross-attention mechanism and generates the voxel feature
volume F3D

o as expressed as follows:

VPCA(Qp,ps,F2D
o ) =

N∑
i=1

AiWF2D
o (pi

s), (3)

where N is the numbers of sampling points, Ai represents
the attention weight and W denotes the embedding projec-
tion weight. Otherwise, we utilize the general deformable
cross-attention (DCA) [4] on F2D

z to aggregate 2D image
features from the distorted image by warping.

3.4. Spatial volume fusion

We propose the spatial volume fusion (SVF) module to
fuse F3D

z and F3D
o , extending 3D-CVF [13]. As shown

in Fig. 2, the module employs 3×3 and anisotropic convo-
lutions [14] to integrate the two feature volumes through
attention masks. It leads to a voxel feature volume that is
effectively fused both locally and spatially.
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Figure 5. Qualitative results on SemanticKITTI validation set.

4. Experiments
We conduct experiments on SemanticKITTI [5] and
SSCBench-KITTI360 [6] datasets, which contain 20 and 19
classes. We use IoU and mean IoU (mIoU) to evaluate com-
pletion and segmentation. We use estimated depth and VP
from images using pre-trained MobileStereoNet [15] and
NeurVPS [16], respectively.

4.1. Performance comparison

Quantitative results. In Tab. 1, we compare existing
3D semantic occupancy prediction methods across differ-
ent datasets. We outperform the previous metrics in both
IoU (+1.63) and mIoU (+1.11) on the SemanticKITTI
test set, as well as IoU (+2.27) and mIoU (+1.22) on the
SSCBench-KITTI360 test set. Unlike previous methods
(e.g., VoxFormer [2], Symphonies [3]) that excel in only
a single metric, VPOcc outperforms in both IoU and mIoU
metrics.
Qualitative results. Fig. 5 compares results of different
methods on the SemanticKITTI validation set. Boxed areas
highlight the ability of VPOcc to distinguish objects along
the road by effectively leveraging VP to mitigate 2D-3D dis-
crepancies caused by perspective effects.

4.2. Ablation studies

Architecture composition. Tab. 2-(a) validates the effec-
tiveness of our VPOcc modules: VPZoomer, VPCA, and
SVF. VPZoomer addresses pixel density discrepancies in
method (1), and VPCA mitigates feature granularity imbal-

Method VPZoomer VPCA SVF IoU mIoU Params (M)

(1) ✓ 43.97 15.31 105.78

(2) ✓ ✓ 44.18 15.79 105.72

VPOcc (Ours) ✓ ✓ ✓ 44.98 16.36 110.60

(a) Ablation study for the proposed framework.

Range 0m− 17m 17m− 34m 34m− 51.2m

Metric IoU mIoU IoU mIoU IoU mIoU

MonoScene [1] 39.05 12.49 38.52 12.22 31.83 8.57

VoxFormer [2] 48.60 12.95 46.83 13.85 35.85 9.54

OccFormer [8] 38.66 15.38 38.51 13.85 31.24 10.69

Symphonies [3] 39.71 16.28 47.19 16.36 38.04 11.19

VPOcc (Ours) 44.97 17.12 49.66 18.11 39.74 13.22

(b) Depth-wise performance evaluation.

Table 2. Additional experiments of our proposed framework
on SemanticKITTI validation set.

ances caused by perspective projection, resulting in both
IoU (+0.21) and mIoU (+0.48) improvements in method
(2). Additionally, the parameter count is reduced as VPCA
is composed of fewer parameters compared to the general
DCA. Finally, SVF spatially fuses the two feature volumes
to construct the perspective-aware feature volume, leading
to gains in both IoU (+0.80) and mIoU (+0.57).

Depth-wise performance evaluation. Tab. 2-(b) shows
that our method improves performance across depth ranges,
particularly in mIoU. This results from effectively utilizing
VP to distinguish pixel distances from the camera, incorpo-
rating perspective geometry.

5. Conclusion

We propose VPOcc, the camera-based 3D semantic occu-
pancy prediction framework that leverages VP to address
the 2D-3D discrepancy from perspective projection. VP-
Zoomer creates VP-based warped images to balance pixel
density, and VP-guided cross-attention (VPCA) conducts
perspective-aware feature aggregation for uniform feature
granularity. Additionally, spatial volume fusion (SVF) re-
solves 2D-3D discrepancies by effectively fusing feature
volumes. By incorporating these components, VPOcc
achieves superior performance in both IoU and mIoU.
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