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1. Introduction

Cooperative perception algorithms [4, 6, 7, 10–12, 14, 18,
24, 28, 31–33, 36] via vehicle-to-vehicle (V2V) or vehicle-
to-everything (V2X) communication have been proposed to
improve safety of autonomous driving. Perception informa-
tion from multiple Connected Autonomous Vehicles (CAVs)
and roadside units (RSUs) are fused to generate better over-
all detection or tracking results. Relevant datasets have
been released to the public [17, 37], including simulated
ones [8, 15, 32, 33] and real ones [30, 34, 38, 39]. However,
how these algorithms can be used to generate safe coopera-
tive planning results is still under-explored. Other research
has attempted to use LLM-based methods to build end-
to-end perception and planning algorithms [3, 20, 23, 25–
27, 29, 35]. However, these approaches have not yet ex-
plored the benefits of cooperative perception and planning.

In this paper, we propose a novel problem setting
wherein Multi-Modal LLM-based methods are used to build
end-to-end perception and planning algorithms for Cooper-
ative Autonomous Driving, as illustrated in Fig. 1. We as-
sume that there are multiple CAVs, RSUs, and a centralized
LLM computing node. All CAVs and RSUs share their indi-
vidual perception information with the LLM. Any CAV can
ask the LLM a question in natural language to obtain use-
ful information for driving safety. We create the Vehicle-
to-Vehicle Question-Answering (V2V-QA) dataset, built
upon the V2V4Real [34] and V2X-Real [30] cooperative
perception datasets for autonomous driving. Our V2V-
QA includes grounding (Figs. 2a to 2c), notable object
identification (Fig. 2d), and planning (Fig. 2e) question-
answer pairs. The main differences between our V2V-
QA and other related datasets are summarized in Tab. 1.
To establish a benchmark for the V2V-QA dataset, we pro-
pose a strong baseline method: Vehicle-to-Vehicle Multi-
Modal Large Language Model (V2V-LLM), as illustrated
in Fig. 3. Experimental results show that our proposed V2V-
LLM outperforms other baseline methods: no fusion, early
fusion, and intermediate fusion [30–34].

Q: What should I be aware of in front of 
me and along my planned trajectory? 
Any other suggested trajectory?

A: There is a car at [x1, y1] at the planned trajectory, 
with other cars at [x2, y2] and [x3, y3] in front of you. 
The suggested future trajectory is [(X1, Y1), …].

                   Perception Data
                   Language QA

V2V-LLM
front

CAV1

CAVEGO

Figure 1. Overview of our problem setting of Multi-Modal LLM-
based cooperative autonomous driving. All CAVs/RSUs share
their perception information with the LLM. Any CAV can ask the
LLM a question to obtain useful information for driving safety.

In summary, we create and introduce the V2V-
QA dataset to support the development and evaluation of
Multi-Modal LLM-based approaches to end-to-end cooper-
ative autonomous driving. Our proposed V2V-LLM outper-
forms other baseline fusion methods, indicating the poten-
tial of being a promising foundation model for cooperative
autonomous driving.

2. V2V-QA Dataset

2.1. Dataset Overview

Our V2V-QA dataset includes grounding (Q1-3), notable
object identification (Q4), and planning (Q5), as il-
lustrated in Fig. 2. Our V2V-QA dataset contains two
splits: V2V-split and V2X-split, which are built on top of
V2V4Real [34] and V2X-Real [30] datasets, respectively.
Tab. 2 summarizes the numbers of QA pairs in our proposed
V2V-QA’s V2V-split and V2X-split. We have 1.45M QA
pairs in total and 30.2 QA pairs per frame on average. More
details can be found in the supplementary materials.
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Dataset Publication # CAVs RSU Sim/Real # Frames # QA # QA/frame Point Cloud Planning
Cooperative perception in AD

OPV2V [33] ICRA 2022 2-7 - Sim 11K - - ✓
V2X-Sim [15] RA-L 2022 2-5 ✓ Sim 10K - - ✓
V2XSet [32] ECCV 2022 2-5 ✓ Sim 11K - - ✓
DAIR-V2X [38] CVPR 2022 1 ✓ Real 71K - - ✓
V2V4Real [34] CVPR 2023 2 - Real 20K - - ✓
TUMTrafV2X [39] CVPR 2024 1 ✓ Real 2K - - ✓
V2X-Real [30] ECCV 2024 2 ✓ Real 33K - - ✓
LLM-based AD

NuScenes-QA [21] AAAI 2024 - - Real 34K 460K 13.5 ✓
Lingo-QA [19] ECCV 2024 - - Real 28K 420K 15.3 ✓
MAPLM-QA [2] CVPR 2024 - - Real 14K 61K 4.4 ✓
DriveLM [23] ECCV 2024 - - Sim+Real 69K 2M 29.1 ✓
TOKEN [25] CoRL 2024 - - Real 28K 434K 15.5 ✓
OmniDrive [27] arXiv 2024 - - Real 34K 450K 13.2 ✓
V2V-QA (Ours) - 2 ✓ Real 48K 1.45M 30.2 ✓ ✓

Table 1. Comparison between our V2V-QA and recent related Autonomous Driving (AD) datasets.

Q: Is there anything at the location [x1, y1]?
A: Yes, there is a car …. Its center location is [x1, y1].

Q1: Grounding at a reference location

Q

A

(a) Q1: Grounding at a reference location.

Detected 
Object

Q: Is there anything behind the object at [x1, y1]?
A: Yes, there is a car …. Its center location is [x1, y1].

Q2: Grounding behind a reference object at a location

Q

A

(b) Q2: Grounding behind a reference object at a
location.

backfront

back left

back rightfront right

front left

Detected 
Object

Q: Is there anything behind the front object?
A: Yes, there is a car …. Its center location is [x1, y1].

Q3: Grounding behind a reference object in a direction

Q

A

(c) Q3: Grounding behind a reference object in a
direction.

Q:I am CAVEGO. Is there anything I need to be aware of if 
my planned future trajectory is [(x1, y1), …]]?
A: Yes, there are cars at [x1, y1], ….

Q4: Notable Object Identification

Q

A

(d) Q4: Notable object identification.

Detected 
Object

Detected 
Object

Q: I am CAV1. What is the suggested future trajectory …?
A: The suggested future trajectory is [(x1, y1), …].

Q5: Planning

Q

A

(e) Q5: Planning.

Figure 2. Illustration of V2V-QA’s 5 types of QA pairs. The arrows pointing at LLM indicate the perception data from CAVs.

2.2. Question and Answer Pairs Curation

For each frame of V2V4Real [34] and V2X-Real [30]
datasets, we create 5 different types of QA pairs, includ-
ing 3 types of grounding questions, 1 type of notable ob-
ject identification question, and 1 type of planning ques-
tion. These QAs are designed for cooperative driving sce-
narios. To generate instances of these QA pairs, we use
V2V4Real [34] and V2X-Real [30]’s ground-truth bound-
ing box annotations, each CAV’s ground-truth trajectories,
and individual detection results as the source information.
Then we use different manually designed rules based on the

geometric relationship among the aforementioned entities
and text templates to generate our QA pairs. The text tem-
plate can be seen in Figs. 4 and 5.

Q1. Grounding at a reference location (Fig. 2a): We ask
the LLM to identify whether an object that occupies a spe-
cific query 2D location exists. We use the center locations
of ground-truth boxes and every CAV/RSU’s individual de-
tection result boxes as the query locations in the questions.
By doing so, we can focus more on evaluating each model’s
cooperative grounding ability on the potential false positive
and false negative detection results.
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QA type
V2V-split V2X-split Total

Training Testing Training Testing
Q1 354820 121383 495290 128711 1100204
Q2 35700 13882 167694 35233 252509
Q3 14339 5097 28740 6465 54641
Q4 12290 3446 6274 1708 23718
Q5 12290 3446 6274 1708 23718

Total 429439 147254 704272 173825 1454790
Table 2. Dataset statistics of our V2V-QA’s V2V-split and V2X-
split. Q1: Grounding at a reference location. Q2: Grounding be-
hind a reference object at a location. Q3: Grounding behind a
reference object in a direction. Q4: Notable object identification.
Q5: Planning.

Q2. Grounding behind a reference object at a location
(Fig. 2b): When a CAV’s field of view is occluded, this
CAV may want to ask the centralized LLM to determine
whether there exists any object behind that occluding large
object. We use the center location of each detection result
box as the query locations in these questions. We draw a
sector region based on the relative pose of the asking CAV
and the reference object, and select the closest ground-truth
object in the region as the answer.
Q3. Grounding behind a reference object in a direc-
tion (Fig. 2c): We further challenge the LLM on language
and spatial understanding ability by replacing Q2’s refer-
ence 2D location with a reference directional keyword. We
first get the closest detection result box in each of the 6 di-
rections of a CAV as the reference object. Then we follow
the same approach in Q2 to get the closest ground-truth box
in the corresponding sector region as the answer.
Q4. Notable object identification (Fig. 2d): More critical
abilities of autonomous vehicles involve identifying notable
objects near planned future trajectories. We extract 6 way-
points from the ground-truth trajectory in the next 3 seconds
as the reference future waypoints in the questions. Then we
get, at most, the 3 closest ground-truth objects within 10
meters of the reference future trajectory as the answer.
Q5. Planning (Fig. 2e): Planning is critical because the ul-
timate goal of autonomous vehicles is to navigate through
complex environments safely and avoid potential collisions.
To generate the planning QAs, we extract 6 future way-
points, evenly distributed in the next 3 seconds, from each
CAV’s ground-truth future trajectory as the answer.

3. V2V-LLM
We propose a competitive baseline model, V2V-LLM, for
this LLM-based collaborative driving problem, as shown in
Fig. 3. Our model is a Multi-Modal LLM (MLLM) that
takes the individual perception features of every CAV/RSU
as the vision input, a question as the language input, and
generates an answer as the language output.

For extracting the perception input features, each
CAV/RSU applies a 3D object detection model to its in-

Large Language Model

3D Object Detector

Scene 
Feature
SEGO 

Object 
Feature
OEGO 

… …

3D Object Detector

Scene 
Feature
S1 

Object 
Feature
O1 

… …

Q: Is there anything I 
need to be aware of? 

…

…

A: Yes, there are cars at …

CAVEGO’s Point Cloud PEGO CAV1’s Point Cloud P1

Projector

LoRA

Figure 3. Model diagram of our proposed V2V-LLM for coopera-
tive autonomous driving.

dividual LiDAR point cloud: PEGO and P1. We extract
the scene-level feature map SEGO and S1 from the 3D ob-
ject detection model and transform the 3D object detection
results as the object-level feature vectors OEGO and O1.
We utilize LLaVA [16] to develop our MLLM. Instead of
using LLaVA [16]’s CLIP [22] image feature encoder, we
use PointPillars [13] LiDAR-based 3D object detector as
the point cloud feature encoder. We then feed the result-
ing features to a multi-layer perceptron-based projector net-
work for feature alignment from the point cloud embedding
space to the language embedding space. The aligned per-
ception features are the input perception tokens digested by
the LLM together with the input language tokens from the
question. Finally, the LLM aggregates the perception infor-
mation from all CAVs and RSUs to answer the question.

4. Experiment
We establish a benchmark for our proposed V2V-
QA dataset with experiments on baseline methods: no
fusion, early fusion, intermediate fusion, such as
CoBEVT [31], V2X-ViT [32], and AttFuse [33], and our
proposed V2V-LLM (Fig. 3). The baseline methods also
adopt the same projector and LLM architecture as in our
V2V-LLM but with different point cloud feature encoders.
We follow [25, 27] to use F1 scores, L2-errors and collision
rates as metrics. Tab. 3 shows V2V-LLM’s testing perfor-
mance in V2V-QA’s V2V-split and V2X-split in compari-
son with baseline methods. Overall, V2V-LLM achieves the
best results in the notable object identification and planning
tasks, which are critical in autonomous driving applications.
V2V-LLM also achieves competitive results in the ground-
ing tasks. Figs. 4 and 5 show our V2V-LLM’s qualitative
results on V2V-QA’s testing set. Overall, the outputs of our
model closely align with the ground-truth answers across
all question types, indicating its robustness in various coop-
erative autonomous driving tasks.
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Method
V2V-split V2X-split

Comm(MB) ↓Q1 Q2 Q3 QGr Q4 Q5 Q1 Q2 Q3 QGr Q4 Q5

F1 ↑ F1 ↑ F1 ↑ F1 ↑ F1 ↑ L2 (m) ↓ CR (%) ↓ F1 ↑ F1 ↑ F1 ↑ F1 ↑ F1 ↑ L2 (m) ↓ CR (%) ↓
No Fusion 66.6 22.6 17.2 35.5 47.3 6.55 4.57 55.7 21.4 25.2 34.1 64.4 2.31 9.21 0
Early Fusion 73.5 23.3 20.8 39.2 53.9 6.20 3.55 59.7 23.3 26.1 36.4 67.6 2.12 8.61 1.9208
Intermediate Fusion

AttFuse [33] 70.7 26.4 18.4 38.5 56.9 6.83 4.12 58.9 23.9 26.3 36.4 65.9 2.19 8.39 0.4008
V2X-ViT [32] 70.8 28.0 22.6 40.5 57.6 7.08 4.33 59.6 24.2 26.1 36.6 65.0 2.29 8.86 0.4008
CoBEVT [31] 72.2 29.3 21.3 40.9 57.6 6.72 3.88 - - - - - - - 0.4008
LLM Fusion

V2V-LLM (Ours) 70.0 30.8 21.2 40.7 59.7 4.99 3.00 60.5 25.3 26.7 37.5 69.3 1.71 6.89 0.4068

Table 3. V2V-LLM’s testing performance in V2V-QA’s V2V-split and V2X-split in comparison with baseline methods. Q1: Grounding
at a reference location. Q2: Grounding behind a reference object at a location. Q3: Grounding behind a reference object in a direction.
QGr: Average of grounding (Q1, Q2, and Q3). Q4: Notable object identification. Q5: Planning. L2: L2 distance error. CR: Collision rate.
Comm: Communication cost. In each column, the best results are in boldface, and the second-best results are in underline. More detailed
performance evaluation can be seen in the supplementary material.

Q: Is there anything at the location [73.0, 
-0.4]?

Q: Is there anything behind the object at 
[-30.4, 17.1]?

Q: Is there anything behind the front object? Q: Is there anything behind the front right 
object?

V2V-LLM: Yes, there is a car at the location. 
Its center location is [73.0, -0.4].
GT: Yes, there is a car at the location. Its 
center location is [73.8, -0.4].

V2V-LLM: Yes, there is a car behind the 
object. Its center location is [-42.8, 28.1].
GT: Yes, there is a car behind the object. Its 
center location is [-45.2, 27.3].

V2V-LLM: Yes, there is a car behind the 
front object. Its center location is [28.7, -1.8].
GT: Yes, there is a car behind the front 
object. Its center location is [30.3, -2.0].

V2V-LLM: Yes, there is a car behind the 
front right object. Its center location is [1.0, 
25.6].
GT: Yes, there is a car behind the front right 
object. Its center location is [0.5, 23.3].

Q1: Grounding at a reference location Q2: Grounding behind a reference object 
at a location

Q3: Grounding behind a reference object 
in a direction

Q3: Grounding behind a reference object 
in a direction

Figure 4. V2V-LLM’s grounding results on V2V-QA’s testing set. Magenta ◦: reference locations in questions. Yellow +: model output
locations. Green ◦: ground-truth answers.

Q:I am CAV_EGO. Is there anything I need 
to be aware of if my planned future 
trajectory is [(4.2,0.1),(8.9,0.2),(13.5,0.4),
(18.4,0.6),(23.5,0.7),(28.8,0.9)]?

Q: I am CAV_1. Is there anything I need to 
be aware of if my planned future trajectory is 
[(-73.0,-14.0),(-63.7,-10.4),(-54.2,-7.3),(-43.5
,-5.1),(-33.6,-3.1),(-23.5,-1.6)]?

Q: I am CAV_EGO. What is the suggested 
future trajectory to avoid collision with 
nearby objects?

Q: I am CAV_1. What is the suggested 
future trajectory to avoid collision with 
nearby objects?

V2V-LLM: Yes, there are cars at [4.8, -3.8], 
[11.1, 3.6], [31.1, 0.5], which are close to 
your planned future trajectory.
GT: Yes, there are cars at [4.7, -4.4], [11.5, 
3.3], [30.6, 0.7], which are close to your 
planned future trajectory.

V2V-LLM: Yes, there are cars at [-27.6, 
-2.0], [-37.6, 3.7], [-63.3, -1.1], which are 
close to your planned future trajectory.
GT: Yes, there are cars at [-27.5, -2.0], 
[-37.5, 3.7], [-63.3, -1.1], which are close to 
your planned future trajectory.

V2V-LLM: The suggested future trajectory is 
[(6.2,0.2),(12.6,0.3),(19.2,0.4),(25.9,0.5),(32.
6,0.6),(39.4,0.7)].
GT: The suggested future trajectory is 
[(6.2,0.2),(12.1,0.4),(17.6,0.6),(22.9,0.8),(28.
3,1.0),(33.5,1.1)].

V2V-LLM: The suggested future trajectory is 
[(5.3,0.1),(10.7,0.2),(16.4,0.3),(22.2,0.4),(28.
2,0.5),(34.4,0.7)].
GT: The suggested future trajectory is 
[(5.7,0.1),(11.5,0.2),(17.4,0.4),(23.3,0.5),(29.
3,0.6),(35.1,0.7)].

Q4: Notable Object Identification Q4: Notable Object Identification Q5: Planning Q5: Planning

Figure 5. V2V-LLM’s notable object identification and planning results on V2V-QA’s testing set. For notable object identification, Magenta
curve: planned future trajectories in questions. Green ◦: ground-truth notable object locations. Yellow + and Cyan ×: model identification
outputs corresponding to CAV EGO and CAV 1, respectively. For planning, Green line: future trajectories in ground-truth answers. Yellow
curve and Cyan curve: model planning outputs corresponding to CAV EGO and CAV 1, respectively.

5. Conclusion

We introduce a novel problem setting of Multi-Modal LLM-
based cooperative autonomous driving and create V2V-

QA dataset and benchmark. Our proposed V2V-LLM out-
performs baselines and can be a promising unified multi-
modal architecture for cooperative autonomous driving.
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7. Model Training Details
We use 8 NVIDIA A100-80GB GPUs to train our model.
Our V2V-LLM uses LLaVA-v1.5-7b [16]’s Vicuna [5] as
the LLM backbone. To train our model, we initialize it by
loading the pre-trained LLaVA-v1.5-7b [16]’s checkpoint.
We freeze the LLM and the point cloud feature encoder, and
finetune the projector and the LoRA [9] parts of the model.
During training, we use batch size 32. Adam optimizer is
adopted for training with a starting learning rate 2e− 5 and
a cosine learning rate scheduler with a 3% warm-up ratio.
For all other training settings and hyperparameters, we use
the same ones from LLaVA-v1.5-7b [16].

8. Detailed Evaluation Results
Tabs. 4 and 5 summarize the detailed evaluation results
of our V2V-LLM and other baseline methods in V2V-
QA’s V2V-split and V2X-split. In addition, Tabs. 6 and 7
show the detailed planning performance. For the grounding
task, our V2V-LLM achieves competitive results in V2V-
split and outperforms all other baseline methods in V2X-
split. More importantly, for the notable object identification
task and the planning task, our V2V-LLM outperforms all
other baseline methods in both V2V-split and V2X-split.

9. Detailed Communication Cost and Scaling
Analysis

In our centralized setting, assume that there is one cen-
tralized LLM computing node, Nv CAVs, and each CAV
asks Nq questions at each timestep. Each CAV sends one
scene-level feature map (≤ 0.2MB), one set of individual
object detection result parameters (≤ 0.003MB), Nq ques-
tions (each ≤ 0.0002MB) to the LLM and receives Nq an-
swers (each ≤ 0.0002MB) at each timestep. Note that each
CAV only needs to send the same features to the LLM once
at each timestep because the LLM node can save and reuse
them to answer multiple questions from the same or differ-
ent CAVs at the same timestep. The communication cost
of each CAV is: 0.2 + 0.003 + (0.0002 + 0.0002)Nq =
(0.203 + 0.0004Nq) MB. The LLM receives Nv scene-
level feature maps, Nv set of individual object detection
result parameters, NqNv questions and returns NqNv an-
swers. The communication cost of the centralized LLM is
(0.2 + 0.003 + (0.0002 + 0.0002)Nq)Nv = (0.203Nv +
0.0004NqNv) MB.

Alternatively, one can also consider a decentralized set-
ting that deploys one LLM in each CAV. In this setting, each

CAV receives the features from all other CAVs and does not
need to send or receive any questions or answers. The com-
munication cost of each CAV is (0.2 + 0.003)(Nv − 1) =
0.203(Nv − 1) MB. Tab. 8 summarizes the communica-
tion cost and scaling analysis in the aforementioned set-
tings. There could be more different decentralized settings.
Which setting works best in terms of communication costs
is beyond the current focus of our work.

10. Planning Results with Temporal Inputs
In the main paper, all experiments use point clouds at a sin-
gle frame from each CAV as the visual input to the models.
In this section, we experiment with feeding visual features
from 3 consecutive frames, the current one and the previ-
ous two, as the visual input to the models. Tab. 9 shows the
planning results of the new setting together with the original
setting from the main paper. In general, using visual inputs
from multiple frames improves planning performance.

11. Detailed Ablation Results
Tab. 10 shows the detailed ablation results when using only
the scene-level features or only the object-level features
as input to our V2V-LLM. Both types of input features
contribute to the final performance, and object-level fea-
tures are easier for LLM to digest. Training from scratch
achieves worse performance, meaning that pre-training with
LLaVA’s VQA tasks improves our V2V-LLM’s perfor-
mance in V2V-QA.

12. Additional Dataset Statistics
Our V2V-QA dataset contains two splits: V2V-split and
V2X-split, which are built on top of V2V4Real [34] and
V2X-Real [30] datasets, respectively. In V2V4Real [34],
the training set has 32 driving sequences and a total of 7105
frames of data per CAV, and the testing set has 9 driving
sequences and a total of 1993 frames of data per CAV. In
V2X-Real [30], the training set has 43 driving sequences
and a total of 5772 frames of data per CAV, and the testing
set has 9 driving sequences and a total of 1253 frames of
data per CAV. The frame rate is 10Hz.

For the grounding questions (Q1, Q2, Q3) and the no-
table object identification question (Q4), a QA pair can be
categorized into either a positive case or a negative case. If
at least one object exists that satisfies the condition speci-
fied in the questions, the corresponding QA pair is a posi-
tive case. Otherwise, it is a negative case. Tabs. 11 and 12
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Method
Q1 Q2 Q3 QGr Q4 Q5

Comm(MB) ↓
F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ F1 ↑ P ↑ R ↑ L2avg (m) ↓ CRavg (%) ↓

No Fusion 66.6 77.9 58.2 22.6 29.4 18.4 17.2 17.4 16.9 35.5 47.3 49.2 45.6 6.55 4.57 0
Early Fusion 73.5 82.2 66.5 23.3 29.1 19.5 20.8 22.7 19.3 39.2 53.9 55.4 52.6 6.20 3.55 1.9208
Intermediate Fusion

AttFuse [33] 70.7 79.6 63.6 26.4 31.6 22.7 18.4 19.6 17.4 38.5 56.9 57.2 56.6 6.83 4.12 0.4008
V2X-ViT [32] 70.8 81.1 62.8 28.0 33.9 23.9 22.6 25.2 20.5 40.5 57.6 57.0 58.2 7.08 4.33 0.4008
CoBEVT [31] 72.2 76.8 68.1 29.3 34.7 25.3 21.3 22.1 20.6 40.9 57.6 57.2 58.1 6.72 3.88 0.4008
LLM Fusion

V2V-LLM (Ours) 70.0 80.1 62.2 30.8 36.3 26.7 21.2 21.5 20.8 40.7 59.7 61.9 57.6 4.99 3.00 0.4068

Table 4. V2V-LLM’s testing performance in V2V-QA’s V2V-split in comparison with baseline methods. Q1: Grounding at a reference
location. Q2: Grounding behind a reference object at a location. Q3: Grounding behind a reference object in a direction. QGr: Average
of grounding (Q1, Q2, and Q3). Q4: Notable object identification. Q5: Planning. P: Precision. R: Recall. L2: L2 distance error. CR:
Collision rate. Comm: Communication cost. In each column, the best results are in boldface, and the second-best results are in underline.

Method
Q1 Q2 Q3 QGr Q4 Q5

Comm(MB) ↓
F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ F1 ↑ P ↑ R ↑ L2avg (m) ↓ CRavg (%) ↓

No Fusion 55.7 71.6 45.5 21.4 33.2 15.8 25.2 26.2 24.2 34.1 64.4 66.1 62.7 2.31 9.21 0
Early Fusion 59.7 70.6 51.8 23.3 34.0 17.7 26.1 28.0 24.5 36.4 67.6 69.3 66.0 2.12 8.61 1.9208
Intermediate Fusion

AttFuse [33] 58.9 71.1 50.3 23.9 34.3 18.4 26.3 28.3 24.6 36.4 65.9 67.0 64.9 2.19 8.39 0.4008
V2X-ViT [32] 59.6 69.6 52.1 24.2 33.2 19.1 26.1 28.2 24.3 36.6 65.0 64.8 65.3 2.29 8.86 0.4008
LLM Fusion

V2V-LLM (Ours) 60.5 69.5 53.6 25.3 34.9 19.8 26.7 27.0 26.4 37.5 69.3 71.9 66.8 1.71 6.89 0.4068

Table 5. V2V-LLM’s testing performance in V2V-QA’s V2X-split in comparison with baseline methods. Q1: Grounding at a reference
location. Q2: Grounding behind a reference object at a location. Q3: Grounding behind a reference object in a direction. QGr: Average
of grounding (Q1, Q2, and Q3). Q4: Notable object identification. Q5: Planning. P: Precision. R: Recall. L2: L2 distance error. CR:
Collision rate. Comm: Communication cost. In each column, the best results are in boldface, and the second-best results are in underline.

Method
L2 (m) CR (%)

1s ↓ 2s ↓ 3s ↓ average ↓ 1s ↓ 2s ↓ 3s ↓ average ↓
No Fusion 3.84 6.52 9.30 6.55 1.31 4.76 7.63 4.57
Early Fusion 3.68 6.19 8.74 6.20 0.96 3.86 5.83 3.55
Intermediate Fusion

AttFuse [33] 4.06 6.78 9.64 6.83 1.42 4.41 6.53 4.12
V2X-ViT [32] 4.21 7.05 9.99 7.08 1.33 4.82 6.85 4.33
CoBEVT [31] 3.97 6.71 9.47 6.72 0.93 3.74 6.96 3.88
LLM Fusion

V2V-LLM (ours) 2.96 4.97 7.05 4.99 0.55 3.19 5.25 3.00

Table 6. V2V-LLM’s planning performance in V2V-QA’s V2V-split in comparison with baseline methods. L2: L2 distance error. CR:
Collision rate. In each column, the best results are in boldface, and the second-best results are in underline.

summarizes the numbers of QA pairs in each category, for
V2V-QA’s V2V-split and V2X-split respectively. This ta-
ble shows that V2V-QA has sufficient positive and negative
data samples in both training and testing sets for each of
these QA pairs. The planning task (Q5) is excluded from
Tabs. 11 and 12, as each planning QA pair inherently in-
cludes a ground-truth future trajectory as the answer.

We also visualize our V2V-split distribution of ground
truth answer locations relative to the asking CAV for the
grounding questions (Q1, Q2, Q3) and the notable object
identification question (Q4), as shown in Figs. 6 to 9. In our

coordinate system, x is the CAV’s front direction, and y is
the CAV’s right direction. For the planning question (Q5),
we show the distribution of the ending waypoints in the
ground truth answer future trajectories, as shown in Fig. 10.
We visualize the location distribution of V2V-QA’s V2X-
splitin Figs. 11 to 15. These figures indicate that our V2V-
QA has diverse spatial distributions in the driving scenes.
Compared to NuScenes [1], our V2V-QA has larger ranges
and standard deviations of the ground-truth ending way-
points, as shown in Tab. 13. Therefore, the planning task
in our V2V-QA could be challenging.
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Method
L2 (m) CR (%)

1s ↓ 2s ↓ 3s ↓ average ↓ 1s ↓ 2s ↓ 3s ↓ average ↓
No Fusion 1.33 2.28 3.31 2.31 2.52 9.54 15.57 9.21
Early Fusion 1.24 2.10 3.00 2.12 3.51 8.37 13.93 8.61
Intermediate Fusion

AttFuse [33] 1.27 2.17 3.11 2.19 2.40 9.07 13.70 8.39
V2X-ViT [32] 1.34 2.27 3.25 2.29 1.41 9.89 15.28 8.86
LLM Fusion

V2V-LLM (ours) 0.99 1.70 2.45 1.71 2.17 6.79 11.71 6.89

Table 7. V2V-LLM’s planning performance in V2V-QA’s V2X-split in comparison with baseline methods. L2: L2 distance error. CR:
Collision rate. In each column, the best results are in boldface, and the second-best results are in underline.

Setting Each CAV Centralized LLM
Centralized 0.203 + 0.0004Nq 0.203Nv + 0.0004NqNv

Decentralized 0.203(Nv − 1) -

Table 8. Communication cost (MB) and scaling analysis. Nv:
number of CAVs. Nq: number of questions asked by each CAV at
each timestep.

Method
1 input frame 3 input frames

L2 (m) ↓ CR (%) ↓ L2 (m) ↓ CR (%) ↓
No Fusion 6.55 4.57 5.94 3.77
Early Fusion 6.20 3.55 5.13 3.04
Intermediate Fusion

AttFuse [33] 6.83 4.12 6.46 3.50
V2X-ViT [32] 7.08 4.33 5.52 3.84
CoBEVT [31] 6.72 3.88 6.02 3.40
LLM Fusion

V2V-LLM (ours) 4.99 3.00 4.82 2.93

Table 9. V2V-LLM’s planning performance in V2V-QA’s V2V-
split in comparison with baseline methods. L2: L2 distance error.
CR: Collision rate. In each column, the best results are in bold-
face. and the second-best results are in underline.

13. Additional Qualitative Results
We show more qualitative results of our proposed V2V-
LLM and other baseline methods in the testing set of V2V-
QA’s grounding task in Figs. 16 to 19, notable object
identification task in Figs. 20 to 21, and planning task in
Figs 22 to 23. The baseline methods include no-fusion,
early-fusion, and intermediate-fusion: AttFuse [33], V2X-
ViT [32], and CoBEVT [31]. Results of V2X-split can be
seen in Figs. 24 to 30. In general, our proposed V2V-
LLM’s outputs are closer to the ground-truth answers, in
comparison to other baseline methods’ results.

14. Limitation
Fig. 31 shows failure cases of V2V-LLM’s planning results
on V2V-QA’s testing set. In a few frames, the model gen-
erates future trajectories in the lane of the opposite traffic

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 6. The distribution of ground-truth answer locations rela-
tive to CAV in V2V-QA’s V2V-split Q1: Grounding at a reference
location.

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 7. The distribution of ground-truth answer locations rela-
tive to CAV in V2V-QA’s V2V-split Q2: Grounding behind a ref-
erence object at a location.

direction. A potential solution and future work is to include
HD map information as additional input to the model. Cur-
rently, this approach is not feasible because the base dataset
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Method
Q1 Q2 Q3 QGr Q4 Q5

Comm (MB) ↓
F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ F1 ↑ P ↑ R ↑ L2avg (m) ↓ CRavg (%) ↓

Scene-level only 69.9 74.9 65.5 15.4 19.9 12.6 17.9 26.9 13.5 34.4 43.2 40.2 46.7 7.21 15.55 0.4008
Object-level only 69.0 80.9 60.1 26.9 34.7 21.9 17.6 18.3 16.9 37.8 52.6 57.3 48.6 5.24 7.78 0.0068
Scratch 67.6 77.6 60.0 26.5 26.4 26.5 17.2 16.4 18.2 37.1 49.3 52.7 46.3 6.30 5.01 0.4068
V2V-LLM (ours) 70.0 80.1 62.2 30.8 36.3 26.7 21.2 21.5 20.8 40.7 59.7 61.9 57.6 4.99 3.00 0.4068

Table 10. Ablation study in V2V-QA’s V2V-split. Q1: Grounding at a reference location. Q2: Grounding behind a reference object at
a location. Q3: Grounding behind a reference object in a direction. QGr: Average of grounding (Q1, Q2, and Q3). Q4: Notable object
identification. Q5: Planning. P: Precision. R: Recall. L2: L2 distance error. CR: Collision rate. Comm: Communication cost.

QA type Train-Pos Train-Neg Test-Pos Test-Neg Total
Q1 217403 137417 76522 44861 476203
Q2 17859 17841 8391 5491 49582
Q3 7197 7142 3082 2015 19436
Q4 9911 2379 2517 929 15736

Total 252370 164779 90512 53296 560957
Table 11. Dataset statistics of our V2V-QA’s V2V-split on positive
and negative samples.

QA type Train-Pos Train-Neg Test-Pos Test-Neg Total
Q1 247447 247843 62332 66379 624001
Q2 84005 83689 18297 16936 202927
Q3 14346 14394 3421 3044 35205
Q4 4624 1650 1172 536 7982

Total 350422 347576 85222 86895 870115
Table 12. Dataset statistics of our V2V-QA’s V2X-split on positive
and negative samples.

Dataset
x: forward y: right

min max std min max std
NuScenes -0.9 39.7 10.4 -11.0 11.1 1.9
V2V-QA (ours) -2.1 177.0 28.1 -24.3 12.0 2.4

Table 13. Ranges and standard deviations of ground-truth ending
waypoints.

V2V4Real [34] has not released its HD map to the public.

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 8. The distribution of ground-truth answer locations rela-
tive to CAV in V2V-QA’s V2V-split Q3: Grounding behind a ref-
erence object in a direction.

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 9. The distribution of ground-truth answer locations rela-
tive to CAV in V2V-QA’s V2V-split Q4: Notable object identifica-
tion.
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(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 10. The distribution of ground-truth answer locations rela-
tive to CAV in V2V-QA’s V2V-split Q5: Planning.

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 11. The distribution of ground-truth answer locations rela-
tive to CAV in V2V-QA’s V2X-split Q1: Grounding at a reference
location.

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 12. The distribution of ground-truth answer locations rel-
ative to CAV in V2V-QA’s V2X-split Q2: Grounding behind a
reference object at a location.

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 13. The distribution of ground-truth answer locations rel-
ative to CAV in V2V-QA’s V2X-split Q3: Grounding behind a
reference object in a direction.

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 14. The distribution of ground-truth answer locations rel-
ative to CAV in V2V-QA’s V2X-split Q4: Notable object identifi-
cation.

(a) x (meters) (b) y (meters)

(c) distance (meters) (d) angle (degrees)
Figure 15. The distribution of ground-truth answer locations rela-
tive to CAV in V2V-QA’s V2X-split Q5: Planning.
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Q: Is there anything at the location [73.0, -0.4]?
GT: Yes, there is a car at the location. Its center location is [73.8, -0.4].

No Fusion: There is no object at the location. Early Fusion: Yes, there is a car at the location. Its center location is [73.0, -0.4].

Q1: Grounding at a reference location

AttFuse: Yes, there is a car at the location. Its center location is [73.0, -0.4]. V2X-ViT: Yes, there is a car at the location. Its center location is [73.0, -0.4].

CoBEVT: Yes, there is a car at the location. Its center location is [73.0, -0.4]. V2V-LLM: Yes, there is a car at the location. Its center location is [73.0, -0.4].

Figure 16. V2V-LLM and baseline methods’ grounding results on V2V-QA’s V2V-split testing set. Magenta ◦: reference locations in
questions. Yellow +: model output locations. Green ◦: ground-truth answers.
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Q: Is there anything behind the object at [-30.4, 17.1]?
GT: Yes, there is a car behind the object. Its center location is [-45.2, 27.3].

No Fusion: Yes, there is a car behind the object. Its center location is [-39.4, 20.8]. Early Fusion: Yes, there is a car behind the object. Its center location is [-41.7, 21.1].

Q2: Grounding behind a reference object at a location

AttFuse: Yes, there is a car behind the object. Its center location is [-41.0, 21.0]. V2X-ViT: There is nothing behind the object.

CoBEVT: There is nothing behind the object. V2V-LLM: Yes, there is a car behind the object. Its center location is [-42.8, 28.1].

Figure 17. V2V-LLM and baseline methods’ grounding results on V2V-QA’s V2V-split testing set. Magenta ◦: reference locations in
questions. Yellow +: model output locations. Green ◦: ground-truth answers.

7



Q: Is there anything behind the front object?
GT: Yes, there is a car behind the front object. Its center location is [30.3, -2.0].

No Fusion: There is nothing behind the front object. Early Fusion: Yes, there is a car behind the front object. Its center location is [35.9, -1.9].

Q3: Grounding behind a reference object in a direction

AttFuse: Yes, there is a car behind the front object. Its center location is [36.9, -1.9]. V2X-ViT: Yes, there is a car behind the front object. Its center location is [38.5, -2.4]

CoBEVT: There is nothing behind the front object. V2V-LLM: Yes, there is a car behind the front object. Its center location is [28.7, -1.8].

Figure 18. V2V-LLM and baseline methods’ grounding results on V2V-QA’s V2V-split testing set. Magenta ◦: reference locations in
questions. Yellow +: model output locations. Green ◦: ground-truth answers.

8



Q: Is there anything behind the front right object?
GT: Yes, there is a car behind the front right object. Its center location is [0.5, 23.3].

No Fusion: There is nothing behind the front right object. Early Fusion: There is nothing behind the front right object.

Q3: Grounding behind a reference object in a direction

AttFuse: There is nothing behind the front right object. V2X-ViT: There is nothing behind the front right object.

CoBEVT: There is nothing behind the front right object. V2V-LLM: Yes, there is a car behind the front right object. Its center location is [1.0, 25.6].

Figure 19. V2V-LLM and baseline methods’ grounding results on V2V-QA’s V2V-split testing set. Magenta ◦: reference locations in
questions. Yellow +: model output locations. Green ◦: ground-truth answers.
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Q: I am CAV_EGO. Is there anything I need to be aware of if my planned future trajectory is [(4.2,0.1),(8.9,0.2),(13.5,0.4),(18.4,0.6),(23.5,0.7),(28.8,0.9)]?
GT: Yes, there are cars at [4.7, -4.4], [11.5, 3.3], [30.6, 0.7], which are close to your planned future trajectory.

No Fusion: Yes, there are cars at [4.6, -3.2], [11.4, 3.6], [25.7, 4.0], which are close to 
your planned future trajectory.

Early Fusion: Yes, there is a car at [7.4, -3.8], which is close to your planned future 
trajectory.

Q4: Notable Object Identification

AttFuse: Yes, there are cars at [4.7, -3.6], [12.5, 6.7], [26.7, 7.1], which are close to your 
planned future trajectory.

V2X-ViT: Yes, there are cars at [4.8, 4.1], [11.4, 3.9], [26.9, 0.5], which are close to your 
planned future trajectory.

CoBEVT: Yes, there are cars at [6.4, 5.6], [12.2, 6.7], [27.7, 6.9], which are close to your 
planned future trajectory.

V2V-LLM: Yes, there are cars at [4.8, -3.8], [11.1, 3.6], [31.1, 0.5], which are close to your 
planned future trajectory.

Figure 20. V2V-LLM and baseline methods’ notable object identification results on V2V-QA’s V2V-split testing set. Magenta curve:
planned future trajectories in questions. Green ◦: ground-truth notable object locations. Yellow +: model identification outputs.
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Q: I am CAV_1. Is there anything I need to be aware of if my planned future trajectory is [(-73.0,-14.0),(-63.7,-10.4),(-54.2,-7.3),(-43.5,-5.1),(-33.6,-3.1),(-23.5,-1.6)]?
GT: Yes, there are cars at [-27.5, -2.0], [-37.5, 3.7], [-63.3, -1.1], which are close to your planned future trajectory.

No Fusion: Yes, there are cars at [-27.5, -2.0], [-37.5, 3.7], [-63.3, -1.1], which are close to 
your planned future trajectory.

Early Fusion: Yes, there are cars at [-27.5, -2.0], [-37.5, 3.7], [-63.3, -1.1], which are close 
to your planned future trajectory.

Q4: Notable Object Identification

AttFuse: Yes, there are cars at [-27.5, -2.0], [-37.7, 3.7], [-63.3, -1.1], which are close to 
your planned future trajectory.

V2X-ViT: Yes, there are cars at [-27.5, -2.0], [-37.5, 3.7], [-63.3, -1.1], which are close to 
your planned future trajectory.

CoBEVT: Yes, there are cars at [-27.5, -2.0], [-37.5, 3.7], [-63.3, -1.1], which are close to 
your planned future trajectory.

V2V-LLM: Yes, there are cars at [-27.6, -2.0], [-37.6, 3.7], [-63.3, -1.1], which are close to 
your planned future trajectory.

Figure 21. V2V-LLM and baseline methods’ notable object identification results on V2V-QA’s V2V-split testing set. Magenta curve:
planned future trajectories in questions. Green ◦: ground-truth notable object locations. Cyan ×: model identification outputs.
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Q: I am CAV_EGO. What is the suggested future trajectory to avoid collision with nearby objects?
GT: The suggested future trajectory is [(6.2,0.2),(12.1,0.4),(17.6,0.6),(22.9,0.8),(28.3,1.0),(33.5,1.1)].

No Fusion: The suggested future trajectory is 
[(7.2,0.2),(14.6,0.4),(21.4,0.6),(28.4,0.9),(35.2,1.1),(42.0,1.3)].

Early Fusion: The suggested future trajectory is 
[(6.2,0.2),(12.7,0.4),(19.3,0.6),(25.9,0.8),(32.7,1.0),(39.6,1.2)].

Q5: Planning

AttFuse: The suggested future trajectory is 
[(6.4,0.2),(13.1,0.4),(20.1,0.6),(27.4,0.8),(34.2,1.0),(41.1,1.2)].

V2X-ViT: The suggested future trajectory is 
[(6.4,0.2),(13.0,0.3),(20.1,0.5),(26.7,0.7),(33.5,0.8),(40.3,1.0)].

CoBEVT: The suggested future trajectory is 
[(6.3,0.2),(12.9,0.4),(19.4,0.6),(26.0,0.8),(32.5,1.0),(39.1,1.3)].

V2V-LLM: The suggested future trajectory is 
[(6.2,0.2),(12.6,0.3),(19.2,0.4),(25.9,0.5),(32.6,0.6),(39.4,0.7)].

Figure 22. V2V-LLM and baseline methods’ planning results on V2V-QA’s V2V-split testing set. Green curve: future trajectories in
ground-truth answers. Green ◦: ending waypoints in ground-truth answers. Yellow curve: model planning outputs. Yellow ×: ending
waypoints in model outputs.
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Q: I am CAV_1. What is the suggested future trajectory to avoid collision with nearby objects?
GT: The suggested future trajectory is [(5.7,0.1),(11.5,0.2),(17.4,0.4),(23.3,0.5),(29.3,0.6),(35.1,0.7)].

No Fusion: The suggested future trajectory is 
[(7.3,0.2),(14.7,0.4),(22.3,0.6),(29.9,0.8),(37.7,1.0),(45.2,1.2)].

Early Fusion: The suggested future trajectory is 
[(5.7,0.1),(11.9,0.2),(17.8,0.4),(23.6,0.5),(29.6,0.6),(35.6,0.8)].

Q5: Planning

CoBEVT: The suggested future trajectory is 
[(4.4,0.1),(9.0,0.2),(13.2,0.3),(17.7,0.4),(22.0,0.5),(26.5,0.6)].

V2V-LLM: The suggested future trajectory is 
[(5.3,0.1),(10.7,0.2),(16.4,0.3),(22.2,0.4),(28.2,0.5),(34.4,0.7)].

AttFuse: The suggested future trajectory is 
[(7.5,0.2),(14.2,0.3),(21.9,0.4),(29.0,0.5),(36.8,0.6),(43.9,0.7)].

V2X-ViT: The suggested future trajectory is 
[(6.3,0.1),(13.1,0.2),(19.4,0.2),(26.3,0.2),(33.4,0.2),(40.1,0.3)].

Figure 23. V2V-LLM and baseline methods’ planning results on V2V-QA’s V2V-split testing set. Green curve: future trajectories in
ground-truth answers. Green ◦: ending waypoints in ground-truth answers. Cyan curve: model planning outputs. Cyan ×: ending
waypoints in model outputs.
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Q: Is there anything at the location [80.3, -30.8]?
GT: Yes, there is a vehicle at the location. Its center location is [80.7, -30.3].

No Fusion: Yes, there is a vehicle at the location. Its center location is [80.3, -30.8]. Early Fusion: Yes, there is a vehicle at the location. Its center location is [80.3, -30.8].

Q1: Grounding at a reference location

AttFuse: Yes, there is a vehicle at the location. Its center location is [80.3, -30.8]. V2X-ViT: Yes, there is a vehicle at the location. Its center location is [80.3, -30.8].

GT: Yes, there is a vehicle at the location. Its center location is [80.7, -30.3]. V2V-LLM: Yes, there is a vehicle at the location. Its center location is [80.3, -30.8].

Figure 24. V2V-LLM and baseline methods’ grounding results on V2V-QA’s V2X-split testing set. Magenta ◦: reference locations in
questions. Yellow ×: model output locations. Green ◦: ground-truth answers.
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Q: Is there anything behind the object at [44.5, 0.9]?
GT: Yes, there is a vehicle behind the object. Its center location is [55.9, 1.2].

No Fusion: There is nothing behind the object. Early Fusion: There is nothing behind the object.

Q2: Grounding behind a reference object at a location

AttFuse: There is nothing behind the object. V2X-ViT: Yes, there is a vehicle behind the object. Its center location is [57.2, 2.0].

GT: Yes, there is a vehicle behind the object. Its center location is [55.9, 1.2]. V2V-LLM: Yes, there is a vehicle behind the object. Its center location is [53.8, 1.0].

Figure 25. V2V-LLM and baseline methods’ grounding results on V2V-QA’s V2X-split testing set. Magenta ◦: reference locations in
questions. Yellow ×: model output locations. Green ◦: ground-truth answers.
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Q: Is there anything behind the front right object?
GT: Yes, there is a pedestrian behind the front right object. Its center location is [35.3, 22.7].

No Fusion: Yes, there is a pedestrian behind the front right object. Its center location is 
[28.1, 14.8].

Early Fusion: Yes, there is a pedestrian behind the front right object. Its center location is 
[18.3, 16.0].

Q3: Grounding behind a reference object in a direction

AttFuse: Yes, there is a pedestrian behind the front right object. Its center location is 
[35.2, 23.0].

V2X-ViT: Yes, there is a pedestrian behind the front right object. Its center location is [1.7, 
24.7].

GT: Yes, there is a pedestrian behind the front right object. Its center location is [35.3, 
22.7].

V2V-LLM: Yes, there is a pedestrian behind the front right object. Its center location is 
[35.2, 23.0].

Figure 26. V2V-LLM and baseline methods’ grounding results on V2V-QA’s V2X-split testing set. Magenta ◦: reference locations in
questions. Yellow ×: model output locations. Green ◦: ground-truth answers.
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Q: I am CAV_EGO. Is there anything I need to be aware of if my planned future trajectory is [(2.0,-0.1),(4.1,-0.1),(6.1,0.0),(8.2,0.2),(10.4,0.5),(12.6,0.8)]?
GT: Yes, there are pedestrians at [1.3, -3.5], [0.5, -4.2], [1.6, -4.2] close to your planned future trajectory.

No Fusion: Yes, there are pedestrians at [0.5, -7.0], [3.4, -7.7], [1.4, -8.1] close to your 
planned future trajectory.

Early Fusion: Yes, there are pedestrians at [0.1, -4.1], [0.2, -5.8], [2.9, -5.7] close to your 
planned future trajectory.

Q4: Notable Object Identification

AttFuse: Yes, there are pedestrians at [1.3, -4.9], [0.6, -5.1], [2.0, -6.5] close to your 
planned future trajectory.

V2X-ViT: Yes, there are cars at [0.9, -5.0], [1.2, -5.2], [0.7, -6.6] close to your planned 
future trajectory.

GT: Yes, there are pedestrians at [1.3, -3.5], [0.5, -4.2], [1.6, -4.2] close to your planned 
future trajectory.

V2V-LLM: Yes, there are pedestrians at [1.6, -5.2], [1.4, -5.8], [1.6, -6.6] close to your 
planned future trajectory.

Figure 27. V2V-LLM and baseline methods’ notable object identification results on V2V-QA’s V2X-split testing set. Magenta curve:
planned future trajectories in questions. Green ◦: ground-truth notable object locations. Yellow ×: model identification outputs.
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Q: I am CAV_1. Is there anything I need to be aware of if my planned future trajectory is [(-15.1,1.7),(-13.5,1.5),(-12.1,1.4),(-10.8,1.2),(-9.7,1.1),(-8.9,1.0)]?
GT: Yes, there is a vehicle at [-0.3, 0.1] close to your planned future trajectory.

No Fusion: Yes, there are vehicles at [-0.1, 0.1], [-15.4, -1.6] close to your planned future 
trajectory.

Early Fusion: Yes, there are vehicles at [-9.1, 1.0], [-15.7, -1.6] close to your planned 
future trajectory.

Q4: Notable Object Identification

AttFuse: Yes, there are vehicles at [-0.1, 0.2], [-11.4, -1.6] close to your planned future 
trajectory.

V2X-ViT: Yes, there is a vehicle at [-5.4, 3.6] close to your planned future trajectory.

GT: Yes, there is a vehicle at [-0.3, 0.1] close to your planned future trajectory. V2V-LLM: Yes, there is a vehicle at [-0.1, 1.2] close to your planned future trajectory.

Figure 28. V2V-LLM and baseline methods’ notable object identification results on V2V-QA’s V2X-split testing set. Magenta curve:
planned future trajectories in questions. Green ◦: ground-truth notable object locations. Cyan ×: model identification outputs.
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Q: I am CAV_EGO. What is the suggested future trajectory to avoid collision with nearby objects?
GT: The suggested future trajectory is [(1.0,-0.3),(2.1,-0.8),(3.3,-1.6),(4.7,-2.5),(6.1,-3.6),(7.7,-4.8)].

No Fusion: The suggested future trajectory is 
[(1.5,-0.1),(3.2,-0.3),(5.0,-0.4),(6.9,-0.6),(8.9,-0.8),(11.0,-1.0)].

Early Fusion: The suggested future trajectory is 
[(0.3,-0.0),(0.6,-0.1),(0.9,-0.1),(1.2,-0.1),(1.6,-0.2),(2.0,-0.2)].

Q5: Planning

AttFuse: The suggested future trajectory is 
[(0.0,-0.0),(0.0,-0.0),(0.0,-0.0),(0.0,-0.0),(0.0,-0.0),(0.0,-0.0)].

V2X-ViT: The suggested future trajectory is 
[(0.0,-0.0),(0.0,-0.0),(0.0,-0.0),(0.0,-0.0),(0.0,-0.0),(0.0,-0.0)].

GT: The suggested future trajectory is 
[(1.0,-0.3),(2.1,-0.8),(3.3,-1.6),(4.7,-2.5),(6.1,-3.6),(7.7,-4.8)].

V2V-LLM: The suggested future trajectory is 
[(1.1,-0.3),(2.3,-0.8),(3.6,-1.5),(5.0,-2.4),(6.5,-3.4),(8.1,-4.5)].

Figure 29. V2V-LLM and baseline methods’ planning results on V2V-QA’s V2X-split testing set. Green curve: future trajectories in
ground-truth answers. Green ◦: ending waypoints in ground-truth answers. Yellow curve: model planning outputs. Yellow ×: ending
waypoints in model outputs.
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Q: I am CAV_1. What is the suggested future trajectory to avoid collision with nearby objects?
GT: The suggested future trajectory is [(2.3,0.1),(4.8,0.1),(7.4,0.0),(10.3,0.0),(13.3,0.1),(16.3,0.1)].

No Fusion: The suggested future trajectory is 
[(2.2,0.0),(4.4,0.0),(6.5,-0.0),(8.5,-0.2),(10.5,-0.3),(12.3,-0.5)].

Early Fusion: The suggested future trajectory is 
[(2.2,0.1),(4.4,0.3),(6.6,0.4),(8.8,0.6),(10.9,0.6),(12.9,0.5)].

Q5: Planning

GT: The suggested future trajectory is 
[(2.3,0.1),(4.8,0.1),(7.4,0.0),(10.3,0.0),(13.3,0.1),(16.3,0.1)].

V2V-LLM: The suggested future trajectory is 
[(2.7,0.1),(5.3,0.1),(8.0,0.1),(10.8,0.0),(13.6,-0.0),(16.4,-0.1)].

AttFuse: The suggested future trajectory is 
[(2.2,0.0),(4.4,0.1),(6.6,0.1),(8.8,-0.0),(10.9,-0.2),(13.0,-0.3)].

V2X-ViT: The suggested future trajectory is 
[(1.9,-0.0),(3.7,-0.1),(5.3,-0.2),(6.8,-0.3),(8.2,-0.4),(9.5,-0.5).

Figure 30. V2V-LLM and baseline methods’ planning results on V2V-QA’s V2X-split testing set. Green curve: future trajectories in
ground-truth answers. Green ◦: ending waypoints in ground-truth answers. Cyan curve: model planning outputs. Cyan ×: ending
waypoints in model outputs.
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Q: I am CAV_EGO. What is the suggested future trajectory to avoid collision with nearby 
objects?
GT: The suggested future trajectory is 
[(2.5,0.1),(5.2,0.2),(7.9,0.3),(10.6,0.4),(13.4,0.4),(16.1,0.5)].

V2V-LLM: The suggested future trajectory is 
[(3.7,0.6),(7.2,1.8),(10.4,3.5),(13.6,5.6),(16.6,8.1),(19.6,11.0)].

V2V-LLM: The suggested future trajectory is 
[(1.5,0.2),(3.1,0.4),(4.8,0.9),(6.6,1.6),(8.7,2.7),(10.9,4.1)].

Q5: Planning

Q: I am CAV_1. What is the suggested future trajectory to avoid collision with nearby 
objects?
GT: The suggested future trajectory is 
[(4.7,0.1),(9.2,0.2),(14.0,0.2),(18.6,0.3),(23.6,0.3),(28.5,0.4)].

Figure 31. Failure cases of V2V-LLM’s planning results on V2V-QA’s testing set. Green curve: future trajectories in ground-truth answers.
Green ◦: ending waypoints in ground-truth answers. Yellow curve and Cyan curve: model planning outputs corresponding to CAV EGO
and CAV 1, respectively. Yellow × and Cyan ×: ending waypoints in model outputs corresponding to CAV EGO and CAV 1, respectively.
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